Аннотация к Рабочим программам учебных предметов «Математика» (ФГОС ООО)

Нормативные документы, на основе которых разрабатывается рабочая программа курса:

- 1. Закон "Об образовании в Российской Федерации" № 273 от 29.12.2012 г. с изменениями.
- Федеральный государственный образовательный стандарт, утвержденный приказом Министерства образования и науки РФ от 17.12.2010 № 1897 с изменениями.
- 3. Примерная основная образовательная программа СОО. Одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-3)
- 4. Основная образовательная программа основного общего образования МАОУ СОШ № 1 с углубленным изучением отдельных предметов г. Верхняяя Пышма.
- 5. Учебный план МАОУ СОШ № 1 с углубленным изучением отдельных предметов

Математика

Математика играет важную роль в формировании у школьников умения учиться. Обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинноследственные закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а также являются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.

Цели изучения:

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научнотехнического прогресса.
- систематическое развитие понятия числа;

• выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка обучающихся к изучению систематических курсов алгебры и геометрии.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные преставления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Задачи курса:

- Формировать элементы самостоятельной интеллектуальной деятельности на основе овладения математическими методами познания окружающего мира (умения устанавливать, описывать, моделировать и объяснять количественные и пространственные отношения);
- Развивать основы логического, знаково-символического и алгоритмического мышления; пространственного воображения; математической речи; умения вести поиск информации и работать с ней;
- Развивать познавательные способности;
- Воспитывать стремление к расширению математических знаний;
- Способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
- Воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Решение названных задач обеспечит осознание школьниками универсальности математических способов познания мира, усвоение математических знаний, связей математики с окружающей действительностью и с другими школьными предметами, а также личностную заинтересованность в расширении математических знаний.

1. Планируемые результаты освоения учебного предмета

В личностных результатах сформированность:

- целостного мировоззрения, соответствующего современному уровню развития науки математики и общественной практики ее применения;
- основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовности и способности к самостоятельной, творческой и ответственной деятельности с применением методов математики;
- готовности и способности к образованию, в том числе самообразованию, на протяжении всей жизни; сознательного отношения к непрерывному образованию как условию успешной профессиональной и общественной деятельности на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованности в приобретении и расширении математических знаний и способов действий, осознанности в построении индивидуальной образовательной траектории; осознанного выбора будущей профессии, ориентированной в применении
- осознанного выоора оудущей профессии, ориентированной в применении
 математических методов и возможностей реализации собственных жизненных планов;

отношения к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

— логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, работа над исследовательским проектом и др.).

В метапредметных результатах сформированность:

- способности самостоятельно ставить цели учебной и исследовательской, проектной деятельности, планировать, осуществлять, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее выполнения;
- умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умения находить необходимую информацию, критически оценивать и интерпретировать информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в различной форме (словесной, табличной, графической, символической), обрабатывать, хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами;
- навыков осуществления познавательной, учебно-исследовательской и проектной деятельности, навыков разрешения проблем; способности и готовности к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- умения продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владения языковыми средствами
- умения ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- владения навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

В предметных результатах сформированность:

Элементы теории множеств и математической логики

- Свободно оперировать понятиями: множество, пустое, конечное и бесконечное множества, элемент множества, подмножество, пересечение, объединение и разность множеств;
- применять числа и задавать множества перечислением и характеристическим свойством;
- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проводить доказательные рассуждения для обоснования истинности утверждений;
- оперировать понятием определения, основными видами определений и теорем;
- понимать суть косвенного доказательства;
- оперировать понятиями счётного и несчётного множества;
- применять метод математической индукции для проведения рассуждений и доказательств при решении задач.

В повседневной жизни и при изучении других предметов:

— использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов;
- использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа и выражения

- Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная
- дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n,
- действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
- переводить числа из одной системы записи (системы счисления) в другую;
- доказывать и использовать признаки делимости, суммы и произведения при выполнении вычислений и решении задач;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше второй;
- находить НОД и НОК разными способами и использовать их при решении задач;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
- выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений;
- свободно оперировать числовыми множествами при решении задач;
- понимать причины и основные идеи расширения числовых множеств;
- владеть основными понятиями теории делимости при решении стандартных задач;
- иметь базовые представления о множестве комплексных чисел;
- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;
- владеть формулой бинома Ньютона;
- применять при решении задач теорему о линейном представлении НОД, Китайскую теорему об остатках, Малую теорему Ферма;
- применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;
- применять при решении задач цепные дроби, многочлены с действительными и целыми коэффициентами;
- владеть понятиями: приводимые и неприводимые многочлены; применять их при решении задач;
- применять при решении задач Основную теорему алгебры; простейшие функции комплексной переменной как геометрические преобразования.

В повседневной жизни и при изучении других предметов:

- выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближённых вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные;
- использовать реальные величины в разных системах измерения;

— составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

- Свободно оперировать понятиями: уравнение; неравенство; равносильные уравнения и неравенства; уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве; равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения третьей и четвёртой степеней, дробно-рациональные и иррациональные;
- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
- применять теорему Безу к решению уравнений;
- применять теорему Виета для решения некоторых уравнений степени выше второй;
- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
- владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
- использовать метод интервалов для решения неравенств, в том числе дробнорациональных и включающих в себя иррациональные выражения;
- решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
- владеть разными методами доказательства неравенств;
- решать уравнения в целых числах;
- изображать на плоскости множества, задаваемые уравнениями, неравенствами и их системами;
- свободно использовать тождественные преобразования при решений уравнений и систем уравнений;
- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
- свободно решать системы линейных уравнений;
- решать основные типы уравнений и неравенств с параметрами;
- применять при решении задач неравенства Коши—Буняковского, Бернулли;

В повседневной жизни и при изучении других предметов:

- составлять и решать уравнения, неравенства, их системы при решениизадач из других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем, при решении задач из других учебных предметов;
- составлять и решать уравнения и неравенства с параметрами при решении задач из
- других учебных предметов;
- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;
- использовать программные средства при решении отдельных классов уравнений и неравенств.

Функции

— Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции,

график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на

числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и

нечётная функции; уметь применять эти понятия при решении задач;

- владеть понятием: степенная функция; строить её график и уметь применять свойства степенной функции при решении задач;
- владеть понятиями: показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
- владеть понятием: логарифмическая функция; строить её график и уметь применять свойства логарифмической функции при решении задач;
- владеть понятием: тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
- владеть понятием: обратная функция; применять это понятие при решении задач;
- применять при решении задач свойства функций: чётность, периодичность, ограниченность;
- применять при решении задач преобразования графиков функций;
- владеть понятиями: числовые последовательности, арифметическая и геометрическая прогрессии;
- применять при решении задач свойства и признаки арифметической и геометрической прогрессий;
- владеть понятием: асимптота; уметь его применять при решении задач;
- применять методы решения простейших дифференциальных уравнений первого и второго порядков.

В повседневной жизни и при изучении других учебных предметов:

- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, точки перегиба, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.).

Элементы математического анализа

- Владеть понятием: бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;
- применять для решения задач теорию пределов;
- владеть понятиями: бесконечно большие числовые последовательности и бесконечно малые числовые последовательности; уметь сравнивать

бесконечно большие и бесконечно малые последовательности;

- владеть понятиями: производная функции в точке, производная функции;
- вычислять производные элементарных функций и их комбинаций;
- исследовать функции на монотонность и экстремумы;
- -числовые множества на координатной прямой: отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое

представление множеств на координатной плоскости;

- проверять принадлежность элемента множеству;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
- строить графики и применять их к решению задач, в том числе с параметром;
- владеть понятием: касательная к графику функции; уметь применять его при решении задач;
- владеть понятиями: первообразная, определённый интеграл;

- применять теорему Ньютона—Лейбница и её следствия для решения задач;
- свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;
- свободно применять annapam математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;
- оперировать понятием первообразной для решения задач;
- овладеть основными сведениями об интеграле Ньютона—Лейбница и его простейших применениях;
- оперировать в стандартных ситуациях производными высших порядков;
- уметь применять при решении задач свойства непрерывных функций;
- уметь применять при решении задач теоремы Вейерштрасса;
- уметь выполнять приближённые вычисления (методы решения уравнений, вычисления определённого интеграла);
- уметь применять приложение производной и определённого интеграла к решению задач естествознания;
- владеть понятиями: вторая производная, выпуклость графика функции; уметь исследовать функцию на выпуклость.

В повседневной жизни и при изучении других учебных предметов:

— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов, интерпретировать полученные результаты.

Комбинаторика, вероятность и статистика, логика и теория графов

- Оперировать основными описательными характеристиками числового набора; понятиями: генеральная совокупность и выборка;
- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей; вычислять вероятности событий на основе подсчёта числа исходов;
- владеть основными понятиями комбинаторики и уметь применять их при решении задач;
- иметь представление об основах теории вероятностей;
- иметь представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;
- иметь представление о математическом ожидании и дисперсии случайных величин иметь представление о совместных распределениях случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление о нормальном распределении и примерах нормально распределённых случайных величин;
- иметь представление о корреляции случайных величин;
- иметь представление о центральной предельной теореме;
- иметь представление о выборочном коэффициенте корреляции и линейной регрессии;
- иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и её уровне значимости;
- иметь представление о связи эмпирических и теоретических распределений;
- иметь представление о кодировании, двоичной записи, двоичном дереве;
- владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
- иметь представление о деревьях и уметь применять его при решении задач;
- владеть понятием: связность; уметь применять компоненты связности при решении задач;

- уметь осуществлять пути по рёбрам, обходы рёбер и вершин графа;
- иметь представление об Эйлеровом и Гамильтоновом пути; иметь представление о трудности задачи нахождения Гамильтонова пути:
- владеть понятиями: конечные счётные множества; счётные множества; уметь применять их при решении задач;
- уметь применять метод математической индукции;
- уметь применять принцип Дирихле при решении задач.

В повседневной жизни и при изучении других предметов:

- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать методы подходящего представления и обработки данных.

Текстовые задачи

- Решать разные задачи повышенной трудности;
- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения при решении задачи;
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни и при изучении других предметов:

— решать практические задачи и задачи из других предметов.

История и методы математики

- Иметь представление о вкладе выдающихся математиков в развитие науки;
- понимать роль математики в развитии России;
- использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;
- применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики).

Содержание учебного предмета.

1. Повторение

Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 9 класса.

2. Действительные числа

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.

3. Степенная функция

Степенная функция, её свойства и график. Взаимно обратные функции. Равносильные уравнения и неравенства. Иррациональные уравнения.

4. Показательная функция

Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

5. Логарифмическая функция

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, её свойства и график. Логарифмические уравнения. Логарифмические неравенства.

6. Тригонометрические формулы

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов α и -α. Формулы сложения. Синус, косинус и тангенс двойного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.

7. Тригонометрические уравнения.

Уравнение cosx=a, sinx=a, tgx=a. Решение тригонометрических уравнений. Примеры решения тригонометрических неравенств.

8. Повторение.

Обобщение и систематизация курса алгебры и начала анализа за 10 класс.

Содержание учебного предмета «геометрия». 10 класс

1. Избранные вопросы планиметрии (15 часов)

Решение треугольников. Вычисление биссектрис треугольника Вычисление медиан треугольника. Формулы площадей треугольника. Формула Герона. Теорема Чевы .Теорема Менелая Свойства вписанных и описанных четырёхугольников. Признаки вписанных и описанных четырёхугольников. Углы в окружности. Метрические соотношения в окружности. Геометрические места точек в задачах на построение. Геометрические преобразования в задачах на построение. Решение задач на геометрическое место точек. О разрешимости задач на построение . Эллипс, гипербола, парабола. В избранных вопросах математики обобщаются известные из планиметрии сведения . На примере решение треугольников, нахождение площади треугольника, вписанные углы, учащиеся получают представления о необходимости заново доказать известные им из планиметрии факты в тех случаях, когда речь идет о фигурах, а не о конкретной плоскости.

2. Аксиомы стереометрии и их простейшие следствия (5 ч)

Основные понятия стереометрии. Аксиомы стереометрии и их связь с аксиомами планиметрии. Пересечение прямой с плоскостью Существование плоскости, проходящей через три данные точки. Разбиение пространства на два полупространства

О с н о в н а я цель — сформировать представления учащихся об основных понятиях и аксиомах стереометрии. Тема играет важную роль в развитии пространственных представлений учащихся, фактически впервые встречающихся здесь с пространственной геометрией. Поэтому преподавание следует вести с широким привлечением моделей, рисунков. В ходе решения задач следует добиваться от учащихся проведения доказательных рассуждений.

3. Параллельность прямых и плоскостей (12 ч)

Параллельные прямые в пространстве. Признак параллельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Свойства параллельности плоскостей. Существование плоскости , параллельной данной

плоскости. Изображение пространственных фигур на плоскости и его свойства. Отношение отрезков параллельных прямых.

О с н о в н а я цель — дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве. В теме обобщаются известные из планиметрии сведения о параллельности прямых. На примере теоремы о существовании и единственности прямой, параллельной данной, учащиеся получают представления о необходимости заново доказать известные им из планиметрии факты в тех случаях, когда речь идет о точках и прямых пространства, а не о конкретной плоскости. Задачи на доказательство решаются во многих случаях по аналогии с доказательствами теорем; включение задач на вычисление длин отрезков позволяет целенаправленно провести повторение курса планиметрии: равенства и подобия треугольников; определений, свойств и признаков прямоугольника, параллелограмма, ромба, квадрата, трапеции и т. д. Свойства параллельного проектирования применяются к решению простейших задач и практическому построению изображений пространственных фигур на плоскости.

4.Перпендикулярность прямых и плоскостей (13ч)

Перпендикулярные прямые в пространстве. Признак перпендикулярности прямой и плоскости. Свойства перпендикулярности прямой и плоскости. Перпендикуляр и наклонная к плоскости. Расстояние от точки до прямой. Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещивающимися прямыми. Расстояние между параллельными плоскостями

О с н о в н а я цель — дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве. Материал темы обобщает и систематизирует известные учащимся из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала планиметрии. ИЗ практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей. Тема имеет важное пропедевтическое значение для изучения многогранников. Фактически при решении многих задач, связанных с вычислением длин перпендикуляра и наклонных к плоскости, речь идет о вычислении элементов пирамид.

1. Декартовы координаты и векторы в пространстве (18 ч)

Декартовы координаты в пространстве. Расстояние между точками. Координаты середины отрезка. Преобразование симметрии в пространстве. Движение в пространстве. Параллельный перенос в пространстве. Подобие пространственных фигур. Угол между скрещивающимися прямыми. Угол между прямой и плоскостью. Угол между плоскостями. Площадь ортогональной проекции многоугольника. Векторы в пространстве. Действия над векторами в пространстве. Скалярное произведение векторов. Разложение вектора по трем некомпланарным векторам. Уравнение плоскости.

О с н о в н а я цель — обобщить и систематизировать представления учащихся о векторах и декартовых координатах; ввести понятия углов между скрещивающимися прямыми, прямой и плоскостью, двумя плоскостями. Рассмотрение векторов и системы декартовых координат носит в основном характер повторения, так как векторы изучались в курсе планиметрии, а декартовы координаты — в курсе алгебры девятилетней школы. Новым для учащихся является пространственная система координат и трехмерный вектор.

Различные виды углов в пространстве являются, наряду с расстояниями, основными количественными характеристиками взаимного расположения прямых и плоскостей, которые будут широко использоваться при изучении многогранников и тел вращения. Следует обратить внимание на те конфигурации, которые ученик будет использовать в дальнейшем: угол между скрещивающимися ребрами многогранника, угол между ребром и гранью многогранника, угол между гранями многогранника. Основными задачами в данной теме являются задачи на вычисление, в ходе решения которых ученики проводят обоснование правильности выбранного для вычислений угла.

2. Повторение. (3 ч)

Планируемые результаты освоения учебного предмета

В результате изучения геометрии выпускник научится: соотносить плоские
геометрические фигуры и трехмерные объекты с их описаниями
🗆 чертежами, изображениями; различать и анализировать взаимное
расположение фигур; изображать геометрические фигуры и тела, выполнять
чертеж по условию задачи
решать геометрические задачи, опираясь на изученные свойства
планиметрических и
🗆 стереометрических фигур и отношений между ними, применяя
алгебраический и тригонометрический аппарат; проводить доказательные
рассуждения при решении задач, доказывать основные теоремы
□ курса; вычислять линейные элементы и углы в пространственных
конфигурациях, площади
поверхностей пространственных тел и их простейших комбинаций;
применять координатно-векторный метод для вычисления отношений,
расстояний и углов;
□ использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для: исследования (моделирования) несложных
практических ситуаций на основе изученных
🗆 формул и свойств фигур; вычисления длин, площадей реальных объектов при
решении практических задач, используя
□ при необходимости справочники и вычислительные устройства. В результате
изучения курса учащиеся 11 класса должны: Знать/понимать Основные понятия
и определения геометрических фигур по программе;
□ Формулировки аксиом планиметрии, основных теорем и их следствий.
□ возможности геометрического языка как средства описания свойств реальных
предметов и их
🗆 взаимного расположения; роль аксиоматики в геометрии; возможность
построения математических теорий на аксиоматической
□ основе; значение аксиоматики для других областей знания и для практики;
Уметь: соотносить плоские геометрические фигуры и трехмерные объекты с их
описаниями, чертежами
, □ изображениями; различать и анализировать взаимное расположение фигур;
изображать геометрические фигуры и тела, выполнять чертеж по условию
задачи;
решать геометрические задачи, опираясь на изученные свойства
планиметрических и
стереометрических фигур и отношений между ними, применяя алгебраический
и тригонометрический аппарат; проводить доказательные рассуждения при
решении задач, доказывать основные теоремы курса

вычислять линейные элементы и углы в пространственных конфигурациях,
объемы и площади
поверхностей пространственных тел и их простейших комбинаций;
применять координатно-векторный метод для вычисления отношений,
расстояний и углов;
□ строить сечения многогранников и изображать сечения тел вращения.
□ Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для исследования (моделирования) несложных
практических ситуаций на основе изученных формул и свойств фигур;
вычисления длин, площадей и объемов реальных объектов при решении
практических задач, используя при необходимости справочники и
вычислительные устройства.

Количество часов по предмету

Классы	10	Всего
Количество часов в неделю/год	6/210	210
Количество контрольных работ	8/4	8/4

Автор: алгебра Макарычев и другие, геометрия Алимов и другие

Промежуточная аттестация по четвертям.

Электронные ресурсы: Решу ВПР, ОГЭ, Инфоурок. Российская Электронная Школа.